The benefits of digital over analogue radiography include reduced overall cost, particularly at high imaging volumes, reduced examination time, increased patient throughput and a reduction in the number of repeat examinations, and improved physician access to images during examinations as a result of timely production and electronic transfer. These advantages of digital radiography can be exploited in the trauma setting, where diagnostic errors have been attributed primarily to inadequate radiography, with missed fractures occurring most frequently.

The risks of ionising radiation remain an impediment to comprehensive imaging of the polytrauma patient, with each radiographic exposure increasing the cumulative dose of ionising radiation. An increased risk of leukaemia and childhood cancer has been found with increased number of X-ray examinations. A significant risk of breast cancer with increased mortality has been shown in scoliosis patients who had multiple diagnostic X-rays at a young age. Limiting the frequency and dose of radiographic examinations while maximising the detection of injuries, i.e. limiting ionising radiation to ‘as low as reasonably achievable’, is a guiding principle in radiology, particularly in the paediatric setting.

We present an overview of the use of the Lodox Statscan digital radiography system in the Trauma Unit at Red Cross War Memorial Children’s Hospital, currently the only paediatric trauma unit in the world equipped with a full-body scanner. This imaging system enables comprehensive imaging at low dose, and is therefore well suited to paediatric trauma.

The Lodox Statscan digital imaging system

A Statscan (Lodox Systems, (Pty) Ltd., Sandton, South Africa) low-dose linear slot scanning full-body digital X-ray system was installed in the Trauma Unit at Red Cross War Memorial Children's Hospital in 2004 (Fig. 1).

A precursor to Statscan was employed for theft surveillance in the South African diamond mining industry. After recognition of its diagnostic potential, a clinical prototype was installed and evaluated in the Trauma Unit of Groote Schuur Hospital in Cape Town. The quality of Statscan images was found to be comparable with that of conventional radiographs, and the unit was subsequently approved by the United States Food and Drug Administration (2002) and the European Union (2004). Statscan is used primarily for chest radiographic changes in HIV-infected children and digital imaging in paediatric trauma.
Digital radiographic imaging

A precursor to Statscan was employed for theft surveillance in the South African diamond mining industry.

X-ray source and detector banks are mounted on a C-arm that can be rotated around the patient. The C-arm’s longitudinal motion allows a total scanned area of 1800 × 680 mm; its rotation through 100° allows oblique and lateral projections. A custom-built height-adjustable trolley docks onto the C-arm, facilitating patient transport, imaging and access. An adult full-body radiograph (‘bodygram’) is produced in approximately 13 seconds; scanning time depends on patient height and is shorter in children.

Statscan produces less scattered radiation than conventional radiography systems, obviating the need for dedicated radiation protection and hence for patient transfer to a separate radiology department within the trauma unit. The Statscan system is located in the resuscitation room of the trauma unit, alongside a dedicated workstation where images are computed within 10 seconds of the scan and are immediately available to the clinician dealing with the trauma patient.

The effective radiation dose delivered by Statscan for the standard paediatric trauma imaging protocol is less than half that of an equivalent computed radiography (CR) protocol. Adult effective doses are between 9% and 75% of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) doses for standard examinations.

The slot-scanning technology is primarily responsible for the lower radiation dose of the Statscan system. An X-ray source projects a collimated fan-beam of X-ray energy through the patient onto a narrow slot detector, which is aligned with the source on the C-arm. The source and detector move in synchrony, building an image line by line, as the C-arm traverses the patient in the craniocaudal direction. Minimal scattered radiation is detected, resulting in high image quality with low radiation dose to the patient.

Overview of Statscan use in paediatric trauma

A pilot evaluation of the role of Statscan in paediatric polytrauma showed the machine to be effective for triage evaluation, producing image quality comparable with that of a standard computed radiography (CR) system. CR replaces the film used in conventional screen-film radiography with an imaging plate which is scanned to produce a digital image; it is not fully digital, but offers some of the advantages of digital radiography.

Multiple fractures were demonstrated in 40% of patients with positive imaging findings; femoral fractures were the most common injury.

The polytrauma imaging protocol at Red Cross War Memorial Children’s Hospital was modified in response to the favourable performance of Statscan: the standard CR polytrauma series comprising (i) lateral cervical spine, (ii) supine chest, (iii) anteroposterior (AP) pelvis, and (iv) localised AP and lateral projections of any additional area of clinical suspicion for bony injury, was superseded by a new protocol including (i) Statscan AP bodygram, (ii) Statscan lateral cervical spine, and (iii) localised lateral views of any area of clinical or radiological suspicion for bony injury. The new Statscan protocol was, on average, 13% faster than the CR protocol. CR remains the modality of choice for focal trauma imaging.

A review of Statscan use during the first 2 years of the new protocol revealed that approximately 5% of patients (867, median age 72 months, 64% male) treated at the trauma unit had sustained polytrauma and qualified for Statscan imaging. Motor vehicle accidents (MVAs) were the most common cause of polytrauma, accounting for 73.5% of imaging examinations; 50% of patients were pedestrians. Statscan yielded positive diagnostic findings in 40% of cases, with the highest diagnostic yield in MVA cyclists (50%). Multiple fractures were demonstrated in 40% of patients with positive imaging findings. Femoral fractures were the most common injury.

More than 13% of diagnostic errors in emergency departments have...
been attributed to failure to perform appropriate radiography, as a result of reliance on standard imaging protocols and clinical signs as indicators for focal imaging. Inadequate assessment may contribute to up to 30% of early deaths in children with polytrauma. Statscan full-body radiography has enabled the early detection of fractures in paediatric trauma patients in the absence of associated clinical signs. Full-body imaging can assist in the diagnosis of multiple injuries, which are often assessed with difficulty, particularly in the presence of an associated head injury.

Inadequate assessment may contribute to up to 30% of early deaths in children with polytrauma.

The location of the Statscan in the trauma unit enables the patient to remain in the resuscitation room; imaging and resuscitation can be performed concurrently. Transportation of a patient suffering polytrauma to the radiology suite is not only time consuming and labour intensive. It also carries significant risks for complications, with adverse effects to the patient, such as dislodging of endotracheal and nasogastric tubes, drips, intercostal drains and catheters.

Multiple casualties strain the resources of emergency units, lead to increased length of stay and can have an adverse effect on patient outcome. Variation from the norm in response to the demands of a multiple casualty incident, particularly during initial assessment and resuscitation, has been associated with preventable morbidity and mortality. Full-body digital radiography in adults, when compared with conventional radiography, has been found to reduce X-ray imaging time by 3, 21, and 42 minutes for ambulatory, stretcher-borne, and resuscitation trauma patients, respectively. Another adult study showed that acquisition of full-body AP and lateral images could be completed in 6.5 minutes, compared with 25.7 minutes for multiple conventional X-rays taken for the same purpose. The Statscan trauma protocol reduces image acquisition time in the emergency unit, especially when multiple patients present simultaneously, and has the potential to improve emergency department efficiency in dealing with multiple casualty incidents.

Figs 2 and 3 show examples of Statscan images.

Fig. 2. Typical example of the full-body image produced by the Statscan. Injuries revealed by the image are a fractured right femur and fractures of the leftibia and fibula (arrows). Note the sandbags stabilising the head and neck and the various fracture splints with the metal skeleton.

Fig. 3. Lateral cervical spine image produced by the Statscan, demonstrating a widened interval between the atlas and the dens.

Conclusion

Full-body radiographic imaging in the paediatric trauma environment has value in terms of diagnostic yield and efficiency. Capturing the entire body using conventional radiography would require multiple images at high cumulative radiation dose and increased scanning time. The low-dose advantage of the Statscan machine in combination with its full-body imaging capability and the speed at which images are available for viewing, make it particularly attractive in paediatric trauma imaging.

References

3. Ng KH, Rehani MM. X ray imaging goes digital – Digital imaging brings benefits but also demands changes in ways of working. BMJ 2006; 333(7572): 765-766.
Digital radiographic imaging


In a nutshell

- Total body scanning is an ideal imaging mode for injured children presenting with polytrauma.
- The total body scan can be performed faster and with less radiation compared with conventional radiographic methodologies.
- Total body scanning can also be utilised for triage evaluation.
- The scanner should ideally be located in the resuscitation room.
- Due to the slot-scanning technology, there is less scattered radiation and imaging of the vertebral column is improved.

No pill to prevent ageing yet

Two major drug companies, Pfizer and GlaxoSmithKline, are nowhere close to developing a pill that can halt the march of old age. Drugs that may treat the disease by interfering with the biochemistry and physiology of ageing are being tested, but the latest research suggests that they may not work as first thought.

Compounds in the drugs include resveratrol, present in red wine, which is thought to prevent the cellular damage that underlies ageing. There are also several chemicals being tested that are intended to mimic resveratrol’s effects by activating a protein called SIRT1, which is implicated in ageing. Some researchers think that these drugs increase this protein’s activity, but there may be errors in the research.

GlaxoSmithKline is hoping that resveratrol and similar drugs will treat age-related disorders such as type 2 diabetes and cancer. However, a laboratory test designed to measure how much drug activity boosts the activity of SIRT1 may be providing false positives.

Pfizer, in their own search for anti-ageing drugs, tested resveratrol and three other anti-ageing compounds using more sensitive methods and found that none of the compounds work as expected. And, the drugs also seemed to have unintended side-effects that could make them less useful in humans. Another team also concluded that resveratrol doesn’t activate SIRT1.

The controversy continues.